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SUMMARY

An analytical investigation has been made to determine the effect
of frequency-dependent stability derivatives on the lateral stability
of a delta-wing airplane for a flight condition where test results had
shown large variations of the stability derivatives with frequency over
a range of frequencies. Time histories of rolling velocity and angle of
sideslip are obtained by using the Fourier transform to solve the lateral
equations of motion. In order to illustrate the frequency effects of the
stability derivatives, time histories calculated by using constant values
for these derivatives are presented for comparison.

The results of the investigation show that the frequency effects of
the stability derivatives can cause considerable changes in predicted
alrplane motions. Moreover, the results indicate that amplitude effects
of these derivatives can also be important in calculating airplane
responses.,

INTRODUCTION

Currently, perturbed motions of airplanes are generally calculated
on the assumption of constant aerodynamic coefficients. However, it
has long been known that certain unsteady effects, for example, unsteady
1lift, downwash, and sidewash, produce aerodynamic lags that cause these
coefficients to depend on frequency of oscillation. A number of theo-
retical investigations have treated unsteady effects on longitudinal
stability. However, except for limited simplified analyses (for example,
ref. 1) little appears to have been done on the corresponding problem for
lateral stability. Recently, wind-tumnel tests using dynamic testing

facilities (refs. 2 to 4) have provided all the important lateral stability

derivatives of a delta-wing model at subsonic speeds under oscillatory
conditions and show a large effect of frequency on these derivatives,



particularly at medium and high angles of attack. In reference 2, in a
simplified approach to evaluate frequency effects on lateral stability,
calculations were made to determine the effects of unsteady sideslip
derivatives on Dutch roll characteristics. In this method values of the
stability derivatives at the Dutch roll frequency are used to obtain the
roots of the frequency-dependent characteristic equation by iteration.
The Dutch roll roots thus obtained seem to be a good approximation of
the Dutch roll characteristics in the presence of frequency-dependent
stability derivatives. However, Dutch roll frequency-evaluated stability
derivatives are based on a sustained harmonic oscillation and therefore
in the strict sense are only valid at the Dutch roll frequency. When
considering response to arbitrary inputs, it is necessary to consider a
range of frequencies in order to obtain correct dynamic response charac-
teristies. In particular, the low-frequency characteristics are impor-
tant in determining the response after the first few seconds. Therefore
the frequency dependence of the lateral derivatives at all frequencies
should be brought into the response calculations.

The object of the present investigation is to present a general
method for incorporating frequency effects and to give some indication
of the significance of these effects. Oscillatory data on sideslip,
roll, and yaw derivatives, presented in references 2 to 4, are used to
calculate typical lateral motions of a delta-wing interceptor by Fourier
analysis techniques. These motions are then compared to the motions cal-
culated by using zero-frequency or Dutch roll frequency-evaluated sta-
bility derivatives. Results of the oscillation tests to obtain lateral
stability derivatives have also shown some effects of amplitude of
oscillation, particularly for small amplitudes and low frequencies.
These effects are not compatible with linear theory, and no rigorous
analysis was attempted to include them. However, some discussion of the
amplitude effects is presented by using a simplified qualitative approach.

SYMBOLS

The forces and moments are referred to the principal body axes sys-
tem shown in figure 1.

b wing span, ft
cr Lift coefficient, Zoi
=pV-S
C, rolling-moment coefficient, Rolling moment
1l y2
§QV Sb
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yawing-moment coefficient, £
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Lateral force

1 2
=pV=B
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lateral-force coefficient,

differential operator, d/ds
acceleration due to gravity, ft/sec2
altitude, ft

radius of gyration about principal longitudinal axis,
nondimensionalized with respect to b

radius of gyration abcut principal vertical axis, nondimen-
sionalized with respect toc b

reduced-frequency parameter, wb/EV

mass of airplane, W/g, slugs

integers

period of oscillation, sec

rolling angular velocity, radians/sec except where noted in

figures
o -
nondimensional Laplace transform variable f£(7) e PSF(s)ds
0

]

rolling angular acceleration, radians/sec®
amplitude of complex number

yawing angular velocity, radians/sec
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yawing angular acceleration, radians/sec2

wing area, sq ft

nondimensional time parameter based on span, Vt/b

time for amplitude of oscillation to change by a factor of 2
(positive value indicates a decrease to half amplitude;
negative value indicates an increase to double amplitude)

time, sec

airspeed, ft/sec

weight of airplane, 1lb

angle of attack with respect to wing chord plane, deg

angle of sideslip, radians except where noted in figures

amplitude of oscillation, sideslip, deg

rate of change of angle of sideslip, radians/sec

angle between wing chord plane and principal longitudinal
axis, deg (see fig. 1)

inclination of principal longitudinal axis with respect to
flight path, deg (see fig. 1)

phase of complex number, radians

relative density factor, m/pSb

air density, slugs/cu ft

angle of roll, radians

amplitude of oscillation, roll, deg

angle of yaw, radians

amplitude of oscillation, yaw, deg

angular frequency, radians/sec

nondimensional frequency parameter based on span, wb/V

Dutch roll frequency



The symbol s following the subscript of a derivative denotes the
derivative referred to the stability system of axes. Square brackets
around a ratio of two quantities indicate the transfer function relating
the quantities.

ANALYSIS

Preliminary Remarks

The interceptor considered in the present investigation was assumed
to have the same lateral stability derivatives as those cbtained from the
oscillation tests of references 2, 3, and 4. Assumptions of mass and
dimensional characteristics reasonable for this delta-wing airplane are
given 1n table I.

Since the experimental oscillatory data showed particularly large
effects of frequency for medium and high angles of attack, an angle of
attack of 20° was selected for the present investigation for the air-
plane in level flight at an altitude of 60,000 feet with a velocity of
611 feet per second. Variations of the lateral stability derivatives
with reduced frequency parameter are presented in figure 2. The sideslip
derivatives were obtained for only one amplitude in reference 2, as shown
in figure 2(a), whereas the roll and yaw derivatives of references 3 and
L (figs. 2(b) and 2(c)) were obtained over a range of amplitudes and
showed marked amplitude effects. No data were available on the frequency
dependence of side-force derivatives. Because of the relative unimpor-
tance of side-force derivatives, it was considered adegquate to introduce
the most significant CYB as a constant and neglect the others. From

static tests (ref. 2), Cy = -0.52 at an angle of attack of 20°.
> YB

In order to apply linear theory to the calculation of frequency
effects, it is necessary to assume that the roll and yaw derivatives are
constant with amplitude of oscillation. However, in a simplified attempt
to evaluate amplitude effects, results are compared for two sets of sta-
bility derivatives which were obtained from test results at two amplitudes
of roll oscillation (20° and 5°) and two amplitudes of yaw oscillation
(3° and 1.5°). In figures 2(b) and 2(c) the curves representing the
frequency-dependent derivatives at larger amplitudes of roll and yaw
(¢O = 20° and VY, = 3°) are labeled A and are referred to as "combina-

tion A," whereas those at lower amplitudes (f, = 5° and V¥, = 1.5°) are

labeled B and are referred to as "combination B." These combinations
represent the largest and smallest amplitudes for which test results were
available over an adequate frequency range. In order to obtain values
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for the derivatives over the frequency range, curves were faired through
the test data to the steady-state values of the derivatives.

Variations with reduced frequency parameter of the lateral sta-
bility derivatives which were selected for the present investigation
are shown in figure 3, converted to the system of principal body axes
presented in figure 1.

Equations of Motion

The nondimensionalized linearized lateral equations of motion for
level flight, referred to the principal body axes, are as follows:

Rolling:

2pbKX02D2¢ = Oy B+ %CZSDB +£0; Df+ %clﬁnzgé +2C Db+ €7 D3+ Cy (1a)
Yawing:

QpszozDaty = Cn B+ %CnéDB + %cnrmw %cnfnew; %Cn.pD‘é“' %C%ngs + Cp (1b)
Sideslipping:

Ep.b(DB+ cos n D¥ -sin q D¢) = CYBB+ (CL cos n)¢ + <CL sin n)w +Cy (lc)

Solutions of the equations of motion are presented for D¢ and B
in response to rolling-and yawing-moment coefficients, since roll rate
and sideslip responses are considered to be adequate to describe the
lateral dynamic characteristics of the airplane. By use of determinants,
the following expressions for the Laplace transforms of the desired solu-
tions were obtained in the usual manner from equations (l):

- - - =y )
% - _ P]_(p)k) 2@_ - ='P§(P:k)
Cz_(p’k) CIGHRY) _cn_(p’k) Q(5,k)
> (2)
— " - f~ i -
B l. ., PolB,k) B = .y _ Pu(B,k)
1 S R R () e o




where Pj, Pp, P5, Py, and Q are polynomials in p with coeffi-

cients that are functions of reduced-frequency parameter Kk (because

of the dependence of the stability derivatives on k shown in fig. 3).
These transfer functions are, of course, simply the ratio of the

transform of the output to the transform of the input and are also
identical to the transforms of the responses to unit pulse inputs. By
simply replacing the Laplace transform variable p 1n these expressions
by i®, the Fourier transforms of the transfer functions are obtained.

In this form the transfer function is the familiar complex function of

the frequency known as the "frequency response" function. It can be
written in terms of dimensional frequency o, nondimensional frequency &,
or reduced-frequency parameter k by using the relation o = %& = %gk.

In terms of k, the desired Fourier transforms are:

N
pg ], . - Py (2ik,k)  Py(k)
_E{_(m”k) Qi) ax)
FBT(.__ k) ~ P2(2ik,k) B 1;2(1{)
2 S T BTN
¢ | ( ) Bal )L ?
og |, - ) Ps(2ik,k)  Ps(k
Cn (18,k) Q(2ik,k)  Q(k)

P, (2ik,k) Py (k)
a(2ik,k)  Q(x)

(i®,k)

e
£

The complex functions Py, Py, P3z, Py, and Q are presented in
appendix A,

Calculations

Frequency-response characteristics and time histories of transient
motions in roiling velocity and angle of sideslip were calculated from
the transfer functions presented in the preceding section with frequency-
dependent and with constant coefficients. The data of table I and
CYB = -0.520 are applicable to all calculations. The frequency-dependent

solutions were obtained by using the oscillatory sideslip derivatives of

= O\
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figure 3(a) with large- and with small-amplitude combinations of the
oscillatory roll and yaw derivatives from curves A and B of figures B(b)
and 3(c). No attempt was made to express the transfer functions analyt-
ically in the frequency-dependent cases. At any desired frequency,
values of the transfer functions were simply determined from the values
of the derivatives at that frequency. Enough frequency points were used
to define adequately the frequency response over the frequency range of
interest, which lies between w = 0 and approximately twice the natural
frequency of the lateral oscillation.

The inverse Fourier transform methods and tables of reference 5
were applied to calculate time histories of response to a unit impulse
from the frequency-response characteristics of the frequency-dependent
transfer functions. By numerical integration of these results, time
histories of response to a step input were obtained. In these calcula-
tions the procedure of reference 5 was modified to use a varying fre-
quency interval Aw in the numerical integrations. In many cases the
use of varying interval size yields better accuracy with less work,
since interval size can be tailored to the slope of the curve. The
modified procedure is outlined in an example in appendix B.

For comparison with the frequency-dependent solutions, frequency-
independent transfer functions were obtained from the steady-state
(x = 0) values of the oscillatory stability derivatives and from their
values at the Dutch roll frequency. The Dutch roll frequency was
obtained by iteration of the frequency-dependent characteristic equa-
tion. Corresponding to the large- and small-amplitude combinations of
stability derivatives, the Dutch roll oscillation occurred at reduced-
frequency parameters of 0.084 and 0.079, respectively. Values of the
constant stability derivatives are given in table II, and the solutions
of corresponding characteristic equations are presented in table III.

Several significant differences between the characteristics pre-
dicted by the steady-state derivatives and those predicted by the
derivatives at the Dutch roll frequency are shown by the roots in
table ITI. With regard to Dutch roll period and damping, it can be
expected that the results obtained by the iterative method by using
values of derivatives at the Dutch roll frequency will be very accurate.
Therefore, it is clear that the steady-state derivatives lead to a gross
underestimation of the damping and a small overestimation of the periocd
in this case. On the other hand, for the real modes there is no reason
to expect the Dutch roll frequency-evaluated derivatives to give accurate
answers. Table III shows, for example, that the iterative cases (combi-
nations A and B) predict spiral instability, whereas the steady-state
case predicts spiral stabllity. It is reasonable to assume that the slow
spiral mode 1s better described by the steady-state derivatives and that
the unstable spiral roots are incorrect. However, since Fourier tech-
niques are not valid for an unstable system, it was considered necessary
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to obtain a direct proof of the stability of the frequency-dependent
system. The most convenient way to do this is to check the polar plot of
the frequency response in the complex plane (the so-called Nyquist plot).
Figure 4 shows a comparison of [p¢/ci] polar plots and indicates that
the frequency-dependent system for either combination A or B is stable.
Actually, the stable cases (figs. 4(a) and 4(c)) show one clockwise half-
encirclement of the origin, but this is caused by the presence of a root
with a positive real part in the numerator. The denominator, which is
the characteristic equation of the lateral motion, has no unstable roots
(as shown in table III) for the steady-state case. There is no encircle-
ment in either unstable case (fig. 4(b)) because the unstable character-
istic root (a pole of the transfer function) cancels the effect of the
nunerator root previously referred to. The frequency responses and

time histories calculated for these cases are therefore valid. Compara-
ble time histories for the frequency-independent cases were obtained by
the usual Laplace transform method.

= O\

DISCUSSION OF RESULTS

The frequency-response results are discussed first and then the
transient responses are compared. The three cases compared are (a) the
case where the stablility derivatives are dependent on frequency over the
whole significant range from zero to twice the airplane Dutch roll fre-
quency; (b) the case where the stability derivatives are determined at
the Duteh roll frequency and (c) the case where the stability derivatives
are the steady-state values obtained at zero frequency. Results are
shown for frequency-dependent stability derivatives obtained from tests
at two levels of oscillation amplitude.

Frequency Responses

Frequency-response characteristics in roll, [D¢/CZ] and [D¢/Cn] ,
and angle of sideslip, ES/Cﬂ and E%/Cn—_l, for combination A are pre-

sented in figures 5(a), 5(b), 5(c), and 5(d), respectively, and, simi-
larly, for combination B in figures 6(a), 6(b), 6(c), and 6(d), respec-
tively. 1In these figures, the main differences between the responses
obtained with Dutch roll frequency-evaluated (wpgp evaluated) stability

derivatives and those obtained with frequency-dependent (w dependent)
derivatives occur at low frequencies. Good agreement is shown near the

Dutch roll frequency. As indicated in the results of table III, fig-

ures 5 and 6 also show that for the steady-state derivatives the Dutch .
roll mode is much less damped and occurs at a lower frequency. It is

evident from these curves that the steady-state (or pseudostatic)
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derivatives (ss-evaluated) give a poor representation of the lateral
characteristics. However, the significance of the considerable dif-
ferences between the Dutch roll frequency-evaluated and frequency-
dependent cases in the low-frequency range is not so easy to evaluate.
The significance of these differences i1s best seen in the transient
responses, which are discussed in the following section.

It is interesting to note that, in addition to the considerable
effects of the frequency-dependent stability derivatives on the fre-
guency responses, there are considerable effects of amplitude of oscil-
lation also. These effects can be seen by comparing the frequency-
dependent results of figures 5 and 6 and, to some extent, the iterative
roots of table III. Their significance can be seen more clearly by an
examination of the transient responses.

Transient Responses

Time histories of rolling velocity and angle of sideslip are pre-
sented in figure 7 for a step rolling-moment input and figure 8 for a
step yawing-moment input. These figures show a comparison of the
motions which would be predicted by using steady-state derivatives,
Dutch roll frequency-evaluated derivatives, and frequency-dependent
derivatives., A comparison of the results for derivatives obtained for
the higher and lower amplitudes of oscillation in the wind-tunnel tests
is also shown, but for the purposes of this study the effects of fre-
quency are of primary interest.

The case of the steady-state derivatives can be immediately dis-
missed, since it shows a Dutch roll oscillation which is much too large
and lightly damped. This result merely confirms the fact, which has
been pointed out in previous studies, that the pseudostatic derivatives
are inadequate for determining the Dutch roll characteristics of highly
swept configurations at moderate to high angles of attack. The large
amplitude of the oscillations is of particular interest, since it could
not be predicted from the characteristic roots alone. )

However, the most interesting result shown by the transient motions
is the large differences between the Dutch roll frequency-evaluated
motions and the frequency-dependent motions, which develop after the
first few seconds. These large effects in the predicted responses corre-
spond to the low-frequency discrepancies shown in the frequency-response
plots of figures 5 and 6. As mentioned in the discussion of those fig-
ures, the importance of these discrepancies was difficult to evaluate
without looking at the predicted time histories. The results of fig-~
ures 7 and 8 seem to indicate that the iterative method of using the
Dutch roll frequency-evaluated stability derivatives in the calculation
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of the lateral motions of an aircraft can lead to errors whose magnitudes
are comparable to those introduced by simply using the steady-state
derivatives., These results, of course, apply only to those flight con-
ditions where stability derivatives are strongly dependent on frequency.

Comparison of motions incorporating frequency effects shows appreci-
able effects of amplitude. The amplitude effects seem to affect the
motions as much as the frequency effects, that is, the differences between
the frequency-dependent motions for combinations A and B are generally as
large as the differences (for a given amplitude combination) between the
frequency-dependent and the frequency-independent responses. This result
indicates that a complete analysis must take into account amplitude
effects. However, for the purpcse of the present investigation, the fre-
quency effects are of primary interest, and the results have shown that
these can be important in calculating airplane responses. It 1s recom-
mended that the amplitude effects revealed in the present paper be inves-
tigated in a more detailed analysis.

CONCLUDING REMARKS

The results of the investigation to determine the effects of
frequency-dependent stability derivatives show, for a flight condition
where test results had shown large variations of these derivatives with
frequency over a range of frequencies, that the frequency effects of
the stability derivatives can cause considerable changes in predicted
airplane motions. Moreover, the results 1ndicate that amplitude effects
of these derivatives can also be important in calculating airplane
responses. It is recommended that the amplitude effects revealed in the
present paper be investigated in a more detailed analysis.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., July 23, 1959.
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APPENDIX A
FREQUENCY -RESPONSE FUNCTIONS

The Laplace transform (ref. 6) of the lateral equations of motion
(1) for input C; or Cp yields the following equations for frequency-

dependent derivatives such as those plotted in figure 3 as functions of
the reduced-frequency parameter Kk:

[2pbKXO2 - %Czé(kﬂ 5 - %czp(k)}mﬁ(fv) - [ﬁczf(k)ﬁ + 2¢q ()| DY (5)

- lclé(k)ﬁ + clﬁ(kq]e(ﬁ) = ¢y (p)

"o

i
”ng ':?gj

g (K)B + gcnpu{ﬂ g(3) + {[e%xzo? - %cnf(k)] b - %cnrm}w(ﬁ)
> (A1)

né(k)

o]

+ cng(k)] B(3) = c,(p)

CL cos n _ CL sin U
-(2ub sin 1 + ———_—>D¢(p) + <2ub cos 1 - —F (5)
P .

+(2ub16 -y )e(5) - 0

where p 1is the Laplace transform variable.

By the use of determinants the expressions obtained from equa-

B DP

tions (Al) for Eg, —, =X, and B are as follows:
Cq Cy Cn Cn
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E)gs 5.5 AP0 + ByB° + C1F + Dy
—_— p, =
) A5 + B33 + C52 + D + B

- -2 -
A B C
FEB‘ (Bx) = —&— 227 2
|71 AFY + BPY + CP° + Db + E
> (A2)
-3 2 -
_ Azp” + Bzp” + Czp + D
[V'D'g- (P:k) = i 2 D) 2 2
[Cn | APt + BpO + CP° + DP + E
ALF° 5
Bl,- 4o~ + Byb + Cy
"C— (p)k) = _)+ _5 D _
n Ap + Bp” + Cp” + Dp + E

)
Equations (A2) show the polynomials Py, Py, P5, Py, and Q which

appear in equations (2). The coefficients of the polynomials are
defined as follows:
/

A = 2 EprKxongo2 - Ky “Cpns (k) - KZOEClI.)(k)]
+ ub[%czé(k)cnf(k) - %—czf(k)c%(k)]

B = -2u,° I:EKXOEKZOECYB + KXOZCnT(k) + KZO2Clp(k) + Kzogclé(k)sin 1
- Kxogcné(k)cos n} + up EKXOECYBCnf(k) + %KZOECYBCZI.)(}{)

+ %Cnr(k)czi)(k) + %Clp(k)cnf(k) - %Cnp(k)czf(k) - %clr(k)c%(k)

1 1 .
- %Cné(k)clﬁ(k)cos N+ ché(k)c..(k)cos n - ﬂcné(k)clf(k)Sln n

'

+ 014()C, (K)sin ﬂ - %CYBC%(I‘)C%(R) * 7507, Cas(K)Cy (k)

H o\
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2
C = pb[%pbKonan(k)cos n- hubKZO CZB(k)Sin N+ KxogcYBCnr<k)

E

+ Ky 2Cy ¢, (k) - Ky 2C,.(k)Cp sin n - K, 2C,.(k)C; cos
Zo Y, 1p( } - Kx “Ons(K)Cp, sin q - Kz ZB( )Cp, cos

+

%cnr(k)clpm - 201, (K)Cny (K) - %cnﬁ<k)01f)<k)cos n

1 1 1
ECné(k)czp(k)cos n - ECnB(k)le(k)sin N - Ecné(k)clr(k)sin 1

+

1 1
§CIB(k)Cnﬁ(k)cos n+ 2035000, (K)eos n + %Clﬁ(k)cni(k)sin 1

p

+

%Clé(k)cnr(k)sin n] + %[EYBcnp(k)clf(k) + CYBCZr(k)Cnﬁ(k)

CYBCnr(k)Clé(k) - CYBCZp(k)Cnf(k) + cné(k)cli)(k)cL sin 7

Clé(k)cné(k)CL sin 1 + Czé(k)cni(k)CL cos 1 - Cné(k)le(k)CL cos ﬂ

2
Hp &2KXOECHB(k)CL sin 7 - 2KZO ClB(k)CL cos § + ClB(k)Cnr(k)sin n

- CnB(k)CZr(k)sin N+ CZB(k)Cnp(k)cos N - CnB(k)CZp(k)cos q]

+

%l?chnp(k)clr(k) - cYBcnr(k)ch(k) + Cné(k)CZp(k)CL sin q

+

CnB(k)Clﬁ(k)CL sin vy - ClB(k)Cnﬁ(k)CL sin q - Czé(k)cnp(k)CL sin 7

+

CZB(k)Cnf(k)CL cos 1 + Clé(k)c (k)Cp, cos 7

Op

Cné(k)Czr(k)CL cos 1 - CnB(k)Cli(k)CL cos ﬂ

%CLigzp(k)CnB(k)-—Cnp(k)CzB(ki]sin ﬂ+%§IJEnr(k)Cls(k)"Clr<k)0na(ki]°05 1

-

15
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—

e 21 ]
“b beKZO écnf(k)

[ 1
ublfné(k)cos n - Cp (k) - 2Kzo2cyé] + ECYBCnf(k)

prCnB(k)cos N+ %cy k) - lcné(k)cL sin 1

BCnr ( 2

-an(k)cL sin 7

) 2, 1 1 _—
by fmbKZo sin 7 ECHI.)(k)cos n é-Cnf(k)51n Th

2 .
b [2KZO Cy, cos 1 - Cnp(k)cos n - Cnr(k)81n rﬂ

+ %Cnf)(k)CL sin 7 - ‘Ll:CnI'.(k)CL cos 7
Lo (x)Cp sin q - Z¢, (k)Cy cos 1
2 p 2 br

pb[?lr(k) - Czé(k)cos n} - %CYBch(k)
_2prlB(k)cos n+%c7,é(k)CL sin 7 - %CYsclr(k)

CZB(k)CL sin 7

= O\
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1 1 .
Ay = py E&pbeg cos m + Eclé(k)cos n+ ECZf(k)Sln %
B, = py [2Ky °C; sin n + Cy_(k)sin n+ Cy (k)cos 7
4 = My Ky “Cr r L

1 1 .
+ Hclf(k)cL cos 1 - Eclﬁ(k)CL sin 7

1 1 .
C = k)C 0s - =C k)}Cy sin
I 21r()Lc n 21p()L 0l

Replacing the Laplace transform variable by 2ik in equations (A2)
yields the expressions for the polynomials in k of equations (5) as
follows:

\

1_)_(2_52;]:_ Bk + Dy + i(&k5+élk)

Cof @  Ak* + k2 +F + 1(Bxd + Dk)
_ _ s s i}

_ﬁ_ _ ?__2. _ A2k + CE + 1B2k

Cif Q@ Ax* 4+ k24 E + 1(Bk3 + Dk)

S (A3)

55k2 + Dy + 1(1151{5 + 551{)

FTETE57
D&I
i
ﬁbd\N‘

At + k2 + E + 1(Bk3 + Dk)

8] By K% + 0, + iBx
a  Kx* 4 k2 4+ E + 1(Bk3 + Dk)

where in terms of the coefficients of equations (A2)
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APPENDIX B

ILLUSTRATIVE EXAMPLE OF THE USE OF UNEQUAL FREQUENCY
INTERVALS FOR DETERMINING THE TIME RESPONSE TO

A UNIT IMPULSE FROM FREQUENCY-RESPONSE DATA

The present investigation suggests a modification to use unequal
frequency intervals in the procedure of reference 5 for determining the
time response to a unit impulse from frequency-response data. In the
modified procedure the choice of frequency intervals used in the step-
wise representation of the real component of the frequency response is
made on the basis of the local shape of this curve. Where the rate of
change of the curve is large, small intervals are used to get a satis-
factory fit of the curve, and where the rate of change is smaller,
larger intervals may be used. In this way, a good fit for the curve
may be obtained, with correspondingly good accuracy in the calculated
impulse response, by using considerably fewer intervals than with con-
stant intervals, since then the interval size must be chosen uniformly
small to fit the most rapid variations of the curve. When it is
desired to introduce a new frequency interval in the stepwise repre-
sentation the only condition that needs to be satisfied is that the
value of frequency at which the new frequency interval is introduced must
be an integer multiple of this frequency interval. The following summa-
tion, from equation (8) of reference 5, has been shown to be a convenient
numerical representation of the integral which defines the impulse
respouse in terms of the real part of the frequency response:

f(t) =

amn

N .
ﬁﬂ)ZE: rn[?ln z cos{2n - l)%}

n=1 2

Here =z = %?t, and r, is the value of the stepwise representation of

the real part of the frequency response in the nth frequency interval.
The function in brackets is tabulated in reference 5 for a large range

of values of n and 2z. The notation n = N has been changed from that
of reference 5, n = =, because in practice the summation goes to a

finite number when the real part r, becomes negligible. When unequal

frequency intervals are used, the summation shown above simply beccmes a
sum of summations as shown in the example that follows. For illustration,
the modified procedure has been applied to the lightly damped roll rate
response obtained with the steady-state-evaluated derivatives, which is
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defined by the following transfer function:

[P¢](5) 81095° + 60.565% + 37.785 - 0.0413

1 265A5§A + 825.8{:5 + 55&.752 + 10.53p + 0.0159

As shown in figure 9, frequency intervals of 0.10, 0.25, and 0.50 radian
per second, Ay, Ay, and Aw5, respectively, were chosen for the

stepwise representation of the real component of the frequency response.
The time response was then readily calculated from the following
expression:

n=25 5in 7z, cos(Zn - 1)z 0=2 gip g
- cos(2n - 1)z
F(t)=-2-ALul L ( )1+§M Z 2 ( )2p
T Z 17 2
n=21 1 n=1 <0
n=k sin z; cos(2n - 1)z n=10 sin z; cos(2n - 1)z
+ 2 A E 5 3 + E 5 5
i 7 z
n=2 3 n=6 %
L0y AN AV
where 2z, = 5 t, zp = —E_t, and 23 = _Eét

For comparison results were also obtained with a frequency interval of
0.25 radian per second throughout the frequency range. In figure 9 com-
parison of the time responses obtained by numerical integration with the
exact response obtained analytically shows that the response obtained with
three frequency intervals is in much better agreement with the exact
response. It is to be noted that this response was obtained from 15
values of amplitude whereas 20 values were used to obtain the response
with the constant frequency interval.

= oo

N
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TABLE I.- DIMENSIONAL AND MASS CHARACTERISTICS

ASSUMED FOR AIRPLANE

Weight, 1 . . . . . .

g, ft/sec2

(“b)h=6o,ooo :
V, ft/sec

€, deg .

Wing:
Area, sq ft
Span, ft .
Aspect ratio . .
Sweepback of leadlng edge, deg .

Vertical tail:
Area, sq ft
Span, ft .
Aspect ratio .
Sweepback of leadlng edge, deg .

2L, 811
32
136.38
611
0.012
0.109
1.2
652
38.8

2.18
60

116
15.9
2.18
k2.5

= O\
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Figure 1.- Sketch showing principal bedy axes system. Each view pre-
sents a plane of the axis system as viewed along the third axis.
Positive values of forces, moments, and angles are indicated by
arrows,
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(a) Sideslip derivatives; Bo = +2°,

Figure 2.- Variations of lateral stability derivatives with reduced-
frequency parameter for an angle of attack of 20°.
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(b) Roll derivatives, including amplitude effects.

Figure 2.- Continued.
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. Figure 4.- Polar diagrams of frequency response [?Q/C{].
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Figure 5.- Frequency-response characteristics in roll and sideslip for
frequency-dependent and constant stability derivatives. Combination A.
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Figure 5.- Continued.
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Figu.e 6.- Frequency-response characteristics in roll and sideslip for
frequency-dependent and constant stability derivatives. Combination B.
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(a) Rolling velocity.

Figure 7.- Time histories of roll and sideslip motions to a step
rolling-moment input. C; = 0.0l.
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(a) Rolling velocity.

Figure 8.- Time histories of roll and sideslip motions to a step
yawing-moment input. C, = 0.01l.
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Figure 9.- Comparison of the responses to a unit impulse calculated from

frequency-response data with the exact response for the illustrative
problem of appendix B.

NASA - Langley Field, va. Li=-561

196-1



